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Executive Summary

What is biodiesel?
Biodiesel is a renewable diesel fuel substitute.  It can be made from a variety of natural oils and fats.
Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as methanol or
ethanol.  Methanol has been the most commonly used alcohol in the commercial production of biodiesel.
In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also known as B100) and
in blends with petroleum diesel.  European biodiesel is made predominantly from rapeseed oil (a cousin
of canola oil).  In the United States, initial interest in producing and using biodiesel has focused on the
use of soybean oil as the primary feedstock mainly because the United States is the largest producer of
soybean oil in the world.

Why biodiesel?
Proponents of biodiesel as a substitute for diesel fuel (in blends or in its neat form) can point to a number
of potential advantages for biodiesel that could support a number of strategies for addressing national
issues.

ü Reducing dependence on foreign petroleum…
Petroleum imports are at record levels in the United States, and will continue to rise as domestic
supplies of oil shrink.  Our transportation sector relies almost exclusively on petroleum as a
source of energy.  This is due to the high level of demand for gasoline and diesel fuel.  Biodiesel
can be produced domestically from agricultural oils and from waste fats and oils.  With its ability
to be used directly in existing diesel engines, biodiesel offers the immediate potential to reduce
our demand for petroleum in the transportation sector.

ü Leveraging limited supplies of fossil fuels….
Regardless of whose perspective one chooses to believe on the future supply of coal, oil and
natural gas, it is indisputable that the supply of these fuels is, ultimately, limited.  Biodiesel has
the potential to leverage our use of limited supplies of fossil fuels.

ü Mitigating greenhouse gas emissions….
The burning of fossil fuels over the past century has dramatically increased the levels of carbon
dioxide (CO2) and other “greenhouse gases” that trap heat in our atmosphere.  The implications of
the increasing levels of these greenhouse gases are a matter of serious debate.  What is not
questioned is that the levels of these greenhouse gases have risen at unprecedented rates in the
context of geological time1.  To the extent that biodiesel is truly renewable, it could play a role in
reducing greenhouse gas emissions from the transportation sector.

                                                  
1Revelle published the groundbreaking work on atmospheric CO2 build-up during the International Geophysical
Year of 1957, in which he stated the problem of greenhouse gases more clearly than any researcher before or since.
He stated that “Human beings are carrying out a large-scale geophysical experiment of a kind that could not have
happened in the past nor be produced in the future.  Within a few centuries, we are returning to the atmosphere and
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ü Reducing Air Pollution and Related Public Health Risks….
One of EPA’s primary charges is to reduce public health risks associated with environmental
pollution.  Biodiesel can play a role in reducing emissions of many air pollutants, especially those
targeted by EPA in urban areas.  These include emissions of particulate matter (PM), carbon
monoxide (CO), hydrocarbons (HC), sulfur oxides (SOx), nitrogen oxides (NOx) and air toxics.

ü Benefiting our domestic economy….  Spending on foreign imports of petroleum send
dollars out of our economy.  Biodiesel offers the potential to shift this spending from foreign
imports to domestically produced energy.  It also offers new energy-related markets to farmers.

Why a life cycle study?
The purpose of this study is to quantify, to the extent possible, some of the benefits listed above.  In this
study, we have focused on those benefits related to biodiesel energy’s balance, its effect on emissions of
greenhouse gases, and its effects on the generation of air, water and solid waste pollutants.  We have
made no attempt to quantify domestic economic benefits of using biodiesel.

The effect of biodiesel on overall consumption of petroleum and other fossil fuels can only be understood
in the context of this fuel’s “life cycle”—the sequence of steps involved in making and using the fuel
from the extraction of all raw materials from the environment to the final end-use of the fuel in an urban
bus.  Similarly, the accumulation of CO2 in the atmosphere is a global effect that requires a
comprehensive life cycle analysis.  Furthermore, understanding the benefits of biodiesel means
understanding how its life cycle emissions compare to those of petroleum diesel.

This study provides a life cycle inventory of environmental
and energy flows to and from the environment for both
petroleum diesel and biodiesel, as well as for blends of
biodiesel with petroleum diesel.

The scope of this study
Life cycle analysis is a complex science.  The level of detail required in such a study forces a high degree
of specificity in the scope and application of the products being studied.  A substantial amount of
information from engine tests and fuel demonstrations of soybean-derived biodiesel in urban buses is
available.  We relied on this recent data and experience to characterize the performance of soybean-
derived biodiesel in this application.

Findings
Conducting life cycle inventories is fraught with difficulties.  Incomplete data is the rule rather than the
exception.  There are varying degrees of confidence in the results that we present in this report.  The most
reliable conclusions of this study are for overall energy balance and carbon dioxide emissions.  For these
two measures, our data is the most complete.  More importantly, our sensitivity studies show that the
estimates of carbon dioxide emissions and energy requirements are very robust-- that is, these results
show little change in response to changes in key assumptions.

                                                                                                                                                                   

the oceans the concentrated organic carbon stored in sedimentary rocks over hundreds of millions of years.”
Revelle, R.; Suess, H.  Tellus, Volume 9, No. 11, pp 18-21.  1957.
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Reductions in Petroleum and Fossil Energy Consumption
As one component of a strategy for reducing petroleum oil dependence and minimizing fossil fuel
consumption, the use of biodiesel offers tremendous potential.

Substituting 100% biodiesel (B100) for petroleum diesel in
buses reduces the life cycle consumption of petroleum by
95%.  This benefit is proportionate with the blend level of
biodiesel used.  When a 20% blend of biodiesel and
petroleum diesel (B20) is used as a substitute for petroleum
diesel in urban buses, the life cycle consumption of
petroleum drops 19%.

In our study, we found that the production processes for biodiesel and petroleum diesel are almost
identical in their efficiency of converting a raw energy source (in this case, petroleum and soybean oil)
into a fuel product.  The difference between these two fuels is in the ability of biodiesel to utilize a
renewable energy source.

Biodiesel yields 3.2 units of fuel product energy for every
unit of fossil energy consumed in its life cycle.  The
production of B20 yields 0.98 units of fuel product energy
for every unit of fossil energy consumed.

By contrast, petroleum diesel’s life cycle yields only 0.83 units of fuel product energy per unit of fossil
energy consumed.  Such measures confirm the “renewable” nature of biodiesel.

Reductions in CO2 Emissions
Given the low demand for fossil energy associated with biodiesel, it is not surprising that biodiesel’s life
cycle emissions of CO2 are substantially lower than those of petroleum diesel.

Biodiesel reduces net emissions of CO2 by 78.45%
compared to petroleum diesel.  For B20, CO2 emissions
from urban buses drop 15.66%.

In addition, biodiesel provides modest reductions in total methane emissions, compared to petroleum
diesel.  Methane is another, even more potent, greenhouse gas.  Thus, use of biodiesel to displace
petroleum diesel in urban buses is an extremely effective strategy for reducing CO2 emissions.

Changes in Air Pollutant Emissions
The effect of biodiesel on air quality is more complex.  Biodiesel, as it is available today, offers
substantial improvements in some air pollutants, while it leads to increases in others.
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Reductions in Particulates, Carbon Monoxide and Sulfur Oxides...

The use of B100 in urban buses results in substantial
reductions in life cycle emissions of total particulate matter,
carbon monoxide and sulfur oxides (32%, 35% and 8%
reductions, respectively, relative to petroleum diesel’s life
cycle).

All three of these pollutants have been targeted by EPA because of the important role they play in public
health risks, especially in urban areas where the acute effects of these pollutants may be greater.  Given
the concern over urban air quality, it is important to note that most of these reductions occur because of
lower emissions at the tailpipe.  For buses operating in urban areas, this translates to an even greater
potential benefit:

Tailpipe emissions of particulates less than 10 microns in
size are 68% lower for buses run on biodiesel (compared to
petroleum diesel).  In addition, tailpipe emissions of carbon
monoxide are 46% lower for buses run on biodiesel
(compared to petroleum diesel).  Biodiesel completely
eliminates emissions of sulfur oxides at the tailpipe.

Tailpipe emissions of particulates that are smaller than 10 microns in size are specifically regulated by
EPA because of the tendency for fine particulate matter to remain trapped in the lungs.

The reductions in air emissions reported here are proportional to the amount of biodiesel present in the
fuel.  Thus, for B20, users can expect to see 20% of the reductions reported for biodiesel used in its neat
form (B100).

Increased Emissions of Nitrogen Oxides (NOx)…
NOx is one of three pollutants implicated in the formation of ground level ozone and smog in urban areas
(NOx, CO and hydrocarbons).

The use of B100 in urban buses increases life cycle
emissions of NOx by 13.35%. Blending biodiesel with
petroleum proportionately lowers NOx emission.  B20
exhibits a 2.67% increase in life cycle emissions of NOx.
Most of this increase is directly attributable to increases in
tailpipe emissions of NOx.  B100, for example, increases
tailpipe levels of NOx by 8.89%.
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Our results are presented for fuel and engine technology as they exist today.  Our study points out the
need for research on both engine design and biodiesel fuel formulation to address this problem.

Hydrocarbons—higher on a life cycle basis, but lower at the tailpipe…
The increase in hydrocarbon emissions is due to release of hexane in the processing of soybeans and
volatilization of agrochemicals applied on the farm.

Total life cycle emissions of hydrocarbons are 35% higher
for B100, compared to petroleum diesel.  However,
emissions of hydrocarbons at the tailpipe are actually 37%
lower.

These results point out opportunities for improving the life cycle of biodiesel.  Future biodiesel research
should focus on ways of reducing hexane releases from today’s current levels in soybean crushing plants.
Improvements in use of agrochemicals on the farm would have similarly beneficial effects.

Next Steps
At the outset, we designed this study to identify and quantify the advantages of biodiesel as a substitute
for petroleum diesel.  These advantages are substantial, especially in the area of energy security and
control of greenhouse gases.  We have also identified weaknesses or areas of concern for biodiesel—such
as its emissions of NOx and hydrocarbons.  We see these as opportunities for further research to resolve
these concerns.  We hope that our findings will be used to focus future biodiesel research on these critical
issues.

There is much that could be done to build on and improve the work we have done here.  Appropriate next
steps for this work include the following:

• Use the life cycle inventory to assess the relative effects of
petroleum diesel and biodiesel on our environment and
on public health risks in order to gain an understanding
of the benefits associated with biodiesel.

• Quantify the costs and benefits of biodiesel.

• Assess the economic impact of biodiesel as an alternative
fuel (e.g., its effects on jobs, trade deficit, etc.)

• Evaluate other feedstock sources.

• Incorporate new health effects data on hydrocarbon
emissions from biodiesel and petroleum diesel.

• Develop regional life cycle models for biodiesel use.

• Evaluate performance of newer diesel engines and new
fuel production technologies.
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1 How To Use This Report

Reporting on the results of a life cycle study is at best an awkward process.  The complexity of such a
study can lead to the necessary, but sometimes tedious, reporting of much detail.  For life cycle analysis,
the devil is truly in the details.

We recognize, however, that there are many types of readers who may find an interest in the results of our
work.  Therefore, we have presented our study at three different levels of detail: one for the policymaker
interested in “cutting to the quick,” one for the more technically oriented staff often supporting policy
decisions, and one for the “hard core” life cycle practitioner.  This approach has undoubtedly led to some
redundancy in our presentation.  We apologize for any inconvenience that this may cause, but hope that
(at least for those who bothered to stop here first before diving into the report) most will find this
approach more economical in targeting the appropriate level of detail needed.

Here is a road map for finding your way around this report:

For a quick and concise description of the study and its results, see…

• Executive Summary (starting on page iii)

For the 2nd level of detail providing more information on how we conducted the study and a more
detailed discussion of results, see…

• Section 1.0 Technical Overview.  This overview is can be read without any need to reference later
sections (including the bibliography at the end).

For the “hard core” details of our modeling and a detailed discussion of the results see…

• Section 2.0 through Section 11.0.  The reader can start from section 2.0 to get a complete and detailed
description of the study.

Each of the three levels described above is essentially free standing and can be read independently to get a
full perspective on the study.
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2 Technical Overview

This report presents the findings from a study of the life cycle inventories (LCIs) for petroleum diesel and
biodiesel.  An LCI is a comprehensive quantification of all the energy and environmental flows associated
with a product from “cradle to grave.”  It provides information on:

• Raw materials extracted from the environment

• Energy resources consumed

• Air, water, and solid waste emissions generated.

By “cradle to grave,” we mean all the steps from the first extraction of raw materials from the
environment to the final end-use of the product. LCIs are invaluable tools for assessing and comparing the
overall environmental impacts of various products.  One purpose for conducting this study is to assess
overall greenhouse gas emissions from these two fuels.  Because of the global nature of greenhouse gas
effects, these emissions lend themselves very well to life cycle assessment (LCA).  We also considered
other environmental emissions; particularly regulated air emissions such as carbon monoxide,
hydrocarbons, nitrogen oxides, sulfur oxides and particulate matter.  The purpose of this study is to
provide LCI data that can be used by industry and government decision-makers considering biodiesel as
an alternative fuel.  This study is the product of a highly effective partnership between the U.S.
Department of Agriculture (USDA) and the U.S. Department of Energy (DOE), which has brought
together the agricultural and energy expertise needed to adequately address an LCI of biodiesel.

2.1 Stakeholder Involvement
Any good life cycle study makes use of every opportunity to obtain input from all who have a stake in the
final outcome.  This is especially true for those life cycle studies being conducted to support important
government policy decisions.  Many of the early decisions made in setting the scope of the study (see
section 2.2) can have a profound effect on the outcome of the study.  This makes it crucial that all
stakeholders have an opportunity to discuss the key assumptions and options for the analysis.  But
stakeholder involvement cannot stop there.  Input throughout the major steps of the project is useful for
ensuring the proper use and interpretation of the best available data.  Finally, as results from the LCI
model become available, offering the opportunity to have stakeholders provide their perspective helps to
avoid “tunnel vision.”  The most important reason for stakeholder involvement in the study is credibility.
When such studies are done in a vacuum, they stand little chance of getting buy-in from the industries
involved.  In the end, LCI results are only as good as the “buy-in” or level of credibility they engender.

We made stakeholder involvement a top priority in our study.  The following is a list of the groups that
provided input to us during the project:

• Petroleum Industry

• Oilseed Processing Industry

• Animal Renderers and Recyclers

• Chemical Process Industry
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• Biodiesel Producers

• Engine Manufacturers

• U.S. Department of Agriculture

• U.S. Department of Energy

• U.S. Environmental Protection Agency

• State and Local Governments

• Environmental Public Interest Groups.

Outlined below is a brief description of the process used to continually check in with stakeholders.
Throughout this process, we provided opportunities to communicate with us in writing, by phone, and by
e-mail, as well as in our face-to-face meetings.

1. Before pen was put to paper, USDA and DOE brought together a consortium of stakeholders at a
meeting hosted by USDA in Washington, DC, to discuss the need and goals of our study.

2. Based on input from this group, a preliminary scoping document was put together and distributed for
review.

3. A second face-to-face meeting with stakeholders was held to work out the details of the project scope.

4. Once the basic data had been collected on all aspects of the petroleum diesel and biodiesel life cycles,
the stakeholders reconvened to review the data.  Feedback from this meeting resulted in our updating
data sources and filling in gaps in available data.

5. Finally, once results from the LCI model were available, we sought detailed comments from a
representative group of stakeholders (that is, those willing to put in the time to study our results).
They were given a first draft of this report.  Their comments have been carefully compiled.  Wherever
possible, we have made changes to the model and the report to reflect concerns and criticisms raised
by this group.  This document is a product of that final review.

The quality of our results is much the better for the input of these groups.  We are indebted to the
individuals who took the time to participate in this process.

2.2 Scope of the Life Cycle Study

2.2.1 Purpose
The purpose of this study is to conduct an LCI to quantify and compare the comprehensive sets of
environmental flows (to and from the environment) associated with both biodiesel and petroleum-based
diesel, over their entire life cycles.  In addition to the purpose stated, this LCA was initiated to provide the
necessary information that could be used to answer the following questions that have been posed by
policy makers:

2.2.2 What Is “Biodiesel?”
In its most general sense, “biodiesel” has been used to refer to any diesel fuel substitute that is derived
from renewable biomass.  In the past few years, biodiesel has taken on a more specific definition and
currently refers to a family of products made from vegetable oils or animal fats and alcohol, such as
methanol or ethanol.  These are called alkyl esters of fatty acids.  In order for these alkyl esters of fatty
acids to be considered as viable transportation fuels, they must meet stringent quality standards, otherwise
they become standard industrial chemicals that are not suitable for diesel applications. Thus, alkyl esters
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of fatty acids that meet transportation fuel standards are called “biodiesel.”  One popular process for
producing biodiesel is known as “transesterification.”  This is the technology modeled in this report.

Today, biodiesel is made from a variety of natural oils.  Chief among these are soybean oil and rapeseed
oil.  Rapeseed oil, a close cousin of canola oil, dominates the growing biodiesel industry in Europe.  In
the United States, biodiesel is being made from soybean oil because more soybean oil is produced than all
other sources of fats and oil combined. There are many candidates for feedstocks, including recycled
cooking oils, animal fats, and a variety of other oilseed crops.  We selected soybean oil as the feedstock
used for biodiesel production because of the vast number of data that have been generated about biodiesel
from soybean oil.

Today, the most widely used alcohol for biodiesel production is methanol, mostly because of its ease of
processing and its relatively low cost.  We have chosen to model biodiesel production using methanol.
Thus, the working definition of biodiesel in our study is a diesel fuel substitute made via the
transesterification of soybean oil with methanol.  In industry parlance, this biodiesel product is referred to
as soy methyl ester or methyl soyate.

2.2.3 What Is “Petroleum Diesel?”
We defined petroleum diesel as “on-highway” low-sulfur diesel made from crude oil.  Recent regulations
promulgated by the U.S. Environmental Protection Agency (EPA) as part of its enforcement of the 1990
Clean Air Act Amendments set tougher restrictions on diesel used on the road versus diesel used off the
road.  The “on highway” diesel must now meet new limits for sulfur content that are an order of
magnitude lower than previously allowed (0.05 wt% versus 0.5% sulfur).  We restrict our evaluation of
petroleum diesel to this new low-sulfur diesel2.

2.2.4 Defining the Product Application
The choice of the fuels’ end-use can greatly affect the life cycle flows.  Potential markets for biodiesel
cover a wide range of diesel applications, including most truck operations, stationary generation, mining
equipment, marine diesel engines, and bus fleets.  In this study, we compare the use of petroleum diesel
and biodiesel in urban buses.  This choice was based on the availability of end-use data. The urban bus
market was identified by the nascent U.S. biodiesel industry early on as a near-term opportunity, and a
large number of data are available on the performance of diesel bus engines.

2.2.5 What Is Included in the Life Cycle Systems?
Major operations included within the boundary of the petroleum diesel system are:

• Extraction of crude oil from the ground

• Transport of crude oil to an oil refinery

• Refining of crude oil to diesel fuel

• Transport of diesel fuel to its point of use

• Use of the fuel in a diesel bus engine.

                                                  
2 One important clarification should be made about our characterization of petroleum diesel.  In our analysis, low-
sulfur diesel fuel is used in the product application (urban buses).  This is not true for agricultural use of diesel fuel
in the production of soybeans.  Data for “off highway” diesel-powered tractors were used to characterize
performance and emissions of these engines.  This off-highway diesel is not held to the same strict standard for
sulfur content.
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For the biodiesel system, major operations include:

• Produce soybeans

• Transport soybeans to a soy crushing facility

• Recover soybean oil at the crusher

• Transport soybean oil to a biodiesel manufacturing facility

• Conversion of soybean oil to biodiesel

• Transport biodiesel fuel to the point of use

• Use the fuel in a diesel bus engine.

• These operations are not a comprehensive list of what has been modeled in our analysis.  These
operations include within them detailed processes described elsewhere in this report.  For example,
extraction of crude oil includes flows from a number of operations such as onshore and offshore
drilling and natural gas separation.  Onshore drilling is further characterized as either conventional or
advanced technology.

We include more than just the energy and environmental flows that occur directly in each of these steps.
Energy and environmental inputs from the production of any raw materials used in each step are also
included.  Generally, life cycle flows are characterized for all raw materials from the point of extracting
their primary components from the environment.  For example, methanol use in the biodiesel
manufacturing facility contributes life cycle flows that go back to the extraction of natural gas used as a
feedstock.  Likewise, life cycle flows from intermediate energy sources such as electricity are
includedback to extraction of coal, oil, natural gas, limestone, and any other primary resources needed.

2.2.6 What Are the Geographical Boundaries?
The LCA is limited to the use of petroleum diesel and biodiesel in the United States.  This does not mean
that all the steps involved in the life cycles are restricted to domestic boundaries.  Petroleum diesel’s life
cycle, in particular, expands its geographic limits to include foreign crude oil production simply because
half the crude oil used in the United States is imported.  Other aspects of the geographic limits of the
study involve the choice of national versus regional or even site-specific assessment.  For domestic
operations, we rely on national average data.  For foreign operations, we rely on industry average data.
Electricity generation is modeled on a national basis.  Table 1 and Table 2 present specific information on
the geographical scope of the analysis for each stage of the petroleum diesel and biodiesel life cycles.

2.2.7 What Is the Time Frame?
We were faced with two basic options: 1) model technology and markets as they are today; and 2) model
a futuristic scenario based on projected technology and markets.  We chose to focus on a current time
frame.  Thus, we consider production and end-use technologies that are available today for both
petroleum diesel and biodiesel.  This approach ignores future advances in production efficiency and end-
use engine technology.  By limiting the analysis to the present, it is far more “grounded” and objective
because it relies on documented data rather than on potentially optimistic projections.  Results from this
study provide a baseline for considering future scenarios.

2.2.8 Basis for Comparing the Life Cycles
Common sense suggests that any comparison of two fuel products must be done on the same basis.  In the
lexicon of LCA, two industrial systems are compared on the same “functional basis.”  In other words, the
fuels are compared based on identical services they provide.  Once this shared function is defined, a unit
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has to be chosen in order to compare the systems on the same quantitative basis.  For example, a
comparison of fuel life cycles for passenger vehicles might characterize all life cycle flows per mile of
travel delivered by the vehicle.

The unit used to normalize all life cycle flows is known as the “functional unit.”  For a more detailed
discussion of the definition and protocols established for LCIs, refer to publications from the Society of
Environmental Toxicology and Chemistry (SETAC)3 and EPA4.   Medium- and heavy-duty diesel engines
are typically evaluated on the basis of actual work delivered by the engine.  This approach is used because
of the variability (or even the irrelevance) of mileage among the various applications for diesel engines.
Therefore, we have chosen to compare the life cycle flows of biodiesel and petroleum diesel on the basis
of 1 brake horsepower-hour (bhp-h) of work delivered by the bus engine.

Table 1: Geographic Scope of the Petroleum Diesel Life Cycle

Life Cycle Stage Geographic Scope

Crude Oil Extraction International average based on the consumption of crude oil in the
United States

Crude Oil Transportation International average transportation distances to the United States

Crude Oil Refining U.S. national average

Diesel Fuel Transportation U.S. national average

Diesel Fuel Use U.S. national average based on urban bus use

Table 2: Geographic Scope of the Biodiesel Life Cycle

Life Cycle Stage Geographic Scope

Soybean Agriculture Average based on data from the 14 key soybean-producing states

Soybean Transportation U.S. national average

Soybean Crushing U.S. national average based on modeling of a generic U.S. crushing
facility

Soybean Oil Transport U.S. national average

Soybean Oil Conversion U.S. average based on modeling of a generic biodiesel facility

Biodiesel Transportation U.S. national average

Biodiesel Fuel Use U.S. national average based on urban bus use

                                                  
3 SETAC, A Technical Framework for Life-Cycle Assessments, Society of Environmental Toxicology and
Chemistry, Washington DC, 1991; SETAC, Guidelines for Life-Cycle Assessment: A “Code of Practice,” Society of
Environmental Toxicology and Chemistry, Washington, DC, 1993; SETAC, A Conceptual Framework for Life-
Cycle Impact Assessment, Society of Environmental Toxicology and Chemistry, Washington, DC, 1993; SETAC,
Life Cycle Assessment Data Quality: A Conceptual Framework, Society of Environmental Toxicology and
Chemistry, Washington ,DC, 1994.
4 EPA: Life Cycle Design Manual: Environmental Requirements and the Product System, EPA/600/R-92/226, 1993;
U.S. Environmental Protection Agency, Life-Cycle Assessment: Inventory Guidelines and Principles, EPA/600-R-
92-245, 1993; U.S. Environmental Protection Agency, Guidelines for Assessing the Quality of Life-Cycle Inventory
Analysis, EPA/530-R-95-010, 1995.
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2.3 Key Assumptions
The details of the assumptions and modeling steps of the life cycle are presented in subsequent sections of
this report, although two general assumptions applied in the modeling should be highlighted.  First,
national average distances were used for transport of all feedstocks, intermediates, and products.  The
effect of this assumption was tested in a sensitivity analysis.  Second, both fuels are assumed to be used in
“current” diesel engines, defined as engines calibrated to meet 1994 EPA regulations for diesel exhaust
when operated on low-sulfur petroleum diesel.  Other assumptions worth noting include:

• Crude oil delivery from domestic and foreign sources are split almost evenly

• Best available refinery data for extant facilities were used to model a “generic” refinery

• Emissions from petroleum diesel are assumed to meet 1994 engine emissions standards.

• Biodiesel assumptions worth noting include:

• Agriculture practices and yields are based on weighted averages for 14 soybean-producing states

• Emissions are based on actual engine data for biodiesel emissions that are then modeled as changes in
the oxygen content5 in the fuel

• Energy efficiencies of biodiesel-fueled engines are identical to those of petroleum diesel-fueled
engines6

• Biomass-derived carbon dioxide (CO2) in the fuel emissions is recycled in soybean production.

For details on the bases for these assumptions, refer to the sections describing each stage of the life
cycles.

2.4 Findings
LCI results are presented for 100% biodiesel (known as “B100”), a 20% blend of biodiesel with
petroleum diesel (known as “B20”), and petroleum diesel.  These results include estimates of:

• Overall energy requirements

• CO2 emissions

• Other regulated and non-regulated air emissions.  Regulated pollutants include carbon monoxide
(CO), particulate matter less than 10 microns in size (PM10), non-methane hydrocarbons (NMHC),
and nitrogen oxides (NOx).  Non-regulated air emissions include methane (CH4), formaldehyde,
benzene, total hydrocarbons (THC), and total particulate matter (TPM).

• Water emissions

• Solid wastes.

These life cycle flows are presented for the base-case scenarios and for two sensitivity studies.  The base
case describes petroleum diesel and biodiesel life cycle flows for  “national average” scenarios.

The purpose of conducting sensitivity studies on the life cycle of biodiesel was to establish the potential
range for improvement in the fuel, as well as to establish the range of possible error associated with the

                                                  
5 Diesel fuel contains no oxygen.  The amount of oxygen is a measure of biodiesel content in the fuel.  In addition,
percent oxygen proves to be a good basis for predicting emissions.
6 This is substantiated with an analysis of engine performance data.
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assumptions made in the model.  The LCI assumes a “current” time framethat is, we are looking at
options for improvement of agriculture, soybean oil recovery, conversion technology, and engine
technology within a short-term horizon.  This sets realistic limitations on the assumptions used in the
model.

In each life cycle step we considered the potential for near-term improvement.  Two main areas were
identified.  First, we felt it was important to understand the impact of location on biodiesel production.
This allows us to consider the benefits of the best agricultural productivity available in the United States
and the shortest distances for transport of fuel and materials. This sets an upper bound on biodiesel
benefits from the perspective of current agricultural practices and transportation logistics.

Second, we identified the conversion of soybean oil to biodiesel as an aspect of the life cycle that has
significant impact on energy use and emissions and that has a broad range of efficiencies, depending on
the commercial technology used.  Our base case estimate of the energy requirements for soy oil
conversion is based on a preliminary engineering design prepared for this study.  The design was loosely
based on data from an extant transesterification plant in Kansas City, Missouri.  Our energy budget
proved to be much lower than that reported for the facility in Kansas City.  A review of the literature on
recent transesterification technology revealed that our design estimate is at the high end of the range of
recently published literature values. To deal with this disparity in energy estimates for conversion of soy
oil to biodiesel, we decided to look at the range of reported energy budgets as a sensitivity study.

Changes in engine technology may also be an avenue for improving biodiesel on a life cycle basis.  We
opted to forego this area in our sensitivity analysis because of limited data.  Thus, we present in this
report the results of two sensitivity studies:

• The base case for B100 is compared with the LCI for an optimal biodiesel location (Chicago).  The
choice of an optimal location is based on an evaluation of regions with the most efficient production
of soybeans, local concentration of soybean producers, and large end-use markets for urban buses.

• Results for a range of high and low energy demands for soybean conversion to biodiesel are
compared to determine the impact of this stage of the biodiesel life cycle on overall emissions and
energy flows.  Low and high values for energy consumption were based on a survey of technical
literature on the most recent technologies commercially available.

2.4.1 Results of the Base Case Study
The results provided here allow the reader to make a nominal comparison of biodiesel and petroleum
diesel. By nominal, we mean that the LCIs calculated for each fuel reflect generic “national average”
models.  The only exception to this statement is soybean agriculture data, which are provided on a state-
by-state basis for the 14 key soybean-producing states.  Implicit in such a nominal comparison is that
there are no regional differences that could affect any of the stages of each fuel’s life cycle.  There will, of
course, be differences that will affect each fuel.

In most cases, biodiesel is interchangeable with petroleum diesel without any need to modify today’s
diesel engine. However, one key issue for biodiesel use that should be explicitly is the effect of regional
climate on the performance of the fuel.  This fuel’s cold flow properties may limit its use in certain parts
of the country during the winter.  This caveat should be kept in mind. Means of mitigating biodiesel’s
cold flow properties are being evaluated by researchers, though no clear solution is at hand.  Low-sulfur
#2 diesel fuel has similar limitations that are currently addressed with the use of additives and by blending
this fuel with #1 diesel fuel.
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2.4.1.1 Life Cycle Energy Balance
LCIs provide an opportunity to quantify the total energy demands and the overall energy efficiencies of
processes and products. Understanding the overall energy requirements of biodiesel is key to our
understanding the extent to which biodiesel made from soybean oil is a “renewable energy” source.  Put
quite simply, the more fossil energy required to make a fuel, the less we can say that this fuel is
“renewable”. Thus, the renewable nature of a fuel can vary across the spectrum of “completely
renewable.” (i.e., no fossil energy input) to nonrenewable (i.e., fossil energy inputs as much or more than
the energy output of the fuel)7.  Energy efficiency estimates help us to determine how much additional
energy must be expended to convert the energy available in raw materials used in the fuel’s life cycle to a
useful transportation fuel.  The following sections describe these basic concepts in more detail, as well as
the results of our analysis of the life cycle energy balances for biodiesel and petroleum diesel.

2.4.1.1.1 Types of Life Cycle Energy Inputs
In this study, we track several types of energy flows through each fuel life cycle.  For clarity, each of
these energy flows is defined below.

• Total Primary Energy.  All raw materials extracted from the environment can contain8 energy.  In
estimating the total primary energy inputs to each fuel’s life cycle, we consider the cumulative energy
content of all resources extracted from the environment.

• Feedstock Energy.  Energy contained in raw materials that end up directly in the final fuel product is
termed “feedstock energy.”  For biodiesel production, feedstock energy includes the energy contained
in the soybean oil and methanol feedstocks that are converted to biodiesel.  Likewise, the petroleum
directly converted to diesel in a refinery contains primary energy that is considered a feedstock
energy input for petroleum diesel.  Feedstock energy is a subset of the primary energy inputs.

• Process Energy.  The second major subset of primary energy is “process energy.”  This is limited to
energy inputs in the life cycle exclusive of the energy contained in the feedstock (as defined in the
previous bullet).  It is the energy contained in raw materials extracted from the environment that does
not contribute to the energy of the fuel product itself, but is needed in the processing of feedstock
energy into its final fuel product form.  Process energy consists primarily of coal, natural gas,
uranium, and hydroelectric power sources consumed directly or indirectly in the fuel’s life cycle.

• Fossil Energy.  Because we are concerned about the renewable nature of biodiesel, we also track the
primary energy that comes from fossil sources specifically (coal, oil, and natural gas).  All three of
the previously defined energy flows can be categorized as fossil or nonfossil energy.

• Fuel Product Energy.  The energy contained in the final fuel product, which is available to do work in
an engine, is what we refer to as the “fuel product energy”.  All other things being equal, fuel product
energy is a function of the energy density of each fuel.

                                                  
7 This last statement is an oversimplification.  We consider the energy trapped in soybean oil to be renewable
because it is solar energy stored in liquid form through biological processes that are much more rapid than the
geologic time frame associated with fossil energy formation.  Also, other forms of nonrenewable energy besides
fossil fuel exist.
8 The energy “contained” in a raw material is the amount of energy that would be released by the complete
combustion of that raw material.  This “heat of combustion” can be measured in two ways: as a higher heating value
or a lower heating value.  Combustion results in the formation of CO2 and water.  Higher heating values consider the
amount of energy released when the final combustion products are gaseous CO2 and liquid water.  Lower heating
values take into account the loss of energy associated with the vaporization of the liquid water combustion product.
Our energy content is based on the lower heating values for each material.
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2.4.1.1.2 Defining Energy Efficiency
We report two types of energy efficiency.  The first is the overall “life cycle energy efficiency”.  The
second is what we refer to as the “fossil energy ratio”.  Each elucidates a different aspect of the life cycle
energy balance for the fuels studied.

The calculation of the life cycle energy efficiency is simply the ratio of fuel product energy to total
primary energy:

Life Cycle Energy Efficiency = Fuel Product Energy/Total Primary Energy

It is a measure of the amount of energy that goes into a fuel cycle, which actually ends up in the fuel
product.  This efficiency accounts for losses of feedstock energy and additional process energy needed to
make the fuel.

The fossil energy ratio tells us something about the degree to which a given fuel is or is not renewable. It
is defined simply as the ratio of the final fuel product energy to the amount of fossil energy required to
make the fuel:

Fossil Energy Ratio = Fuel Energy/Fossil Energy Inputs

If the fossil energy ratio has a value of zero, then a fuel is not only completely nonrenewable, but it
provides no useable fuel product energy as a result of the fossil energy consumed to make the fuel.  If the
fossil energy ratio is equal to 1, then this fuel is still nonrenewable.  A fossil energy ratio of one means
that no loss of energy occurs in the process of converting the fossil energy to a useable fuel.  For fossil
energy ratios greater than 1, the fuel actually begins to provide a leveraging of the fossil energy required
to make the fuel available for transportation.  As a fuel approaches being “completely” renewable, its
fossil energy ratio approaches “infinity.”  In other words, a completely renewable fuel has no
requirements for fossil energy.

From a policy perspective, these are important considerations.  Policymakers want to understand the
extent to which a fuel increases the renewability of our energy supply.  Another implication of the fossil
energy ratio is the question of climate change.  Higher fossil energy ratios imply lower net CO2

emissions.  This is a secondary aspect of the ratio, as we are explicitly estimating total CO2 emissions
from each fuel’s life cycle.  Nevertheless, the fossil energy ratio serves as a check on our calculation of
CO2 life cycle flows (since the two should be correlated).

2.4.1.1.3 Petroleum Diesel Life Cycle Energy Consumption
Table 3 and Figure 1 show the total primary energy requirements for the key steps in the production and
use of petroleum diesel.  The LCI model shows that 1.2007 MJ of primary energy is used to make 1 MJ of
petroleum diesel fuel.  This corresponds to a life cycle energy efficiency of 83.28%9.

The distribution of the primary energy requirements for each stage of the petroleum diesel life cycle is
shown in Table 3. In Figure 1, the stages of petroleum diesel production are ranked from highest to lowest
in terms of primary energy demand.  Ninety-three percent of the primary energy demand is for extracting
crude oil from the ground. About 88% of the energy shown for crude oil extraction is associated with the
energy value of the crude oil itself. The crude oil refinery step for making diesel fuel dominates the
remaining 7% of the primary energy use.

Removing the feedstock energy of the crude itself from the primary energy total allows us to analyze the
relative contributions of the process energy used in each life cycle.  Process energy used in each stage of
the petroleum life cycle is shown in Figure 2.  Process energy demand represents 20% of the energy
                                                  
9 Using the total primary energy reported in Table 3, Life Cycle Energy Efficiency = 1 MJ of Fuel Product
Energy/1.2007 MJ of Primary Energy Input = 0.8328.
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ultimately available in the petroleum diesel fuel product.  About 90% of the total process energy is in
refining (60%) and extraction (29%).  The next largest contribution to total process energy is for
transporting foreign crude oil to domestic petroleum refiners.

Table 3: Primary Energy Requirements for the Petroleum Diesel Life Cycle

Stage Primary Energy (MJ per MJ of Fuel) Percent

Domestic Crude Production 0.5731 47.73%

Foreign Crude Oil Production 0.5400 44.97%

Domestic Crude Transport 0.0033 0.28%

Foreign Crude Transport 0.0131 1.09%

Crude Oil Refining 0.0650 5.41%

Diesel Fuel Transport 0.0063 0.52%

Total 1.2007 100.00%

There are some significant implications in the process energy results shown in Figure 2 regarding trends
for foreign and domestic crude oil production and use.  Transportation of foreign crude oil carries with it
a fourfold penalty for energy consumption compared to domestic petroleum transport because the
overseas transport of foreign oil by tanker increases the travel distance for foreign oil by roughly a factor
of four.

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

MJ per MJ of Fuel

Domestic Crude Transport

Diesel Fuel Transport

Foreign Crude Transport

Crude Oil Refining

Foreign Crude Oil Production

Domestic Crude Production

Figure 1: Ranking of Primary Energy Demand for the Stages of Petroleum Diesel Production

At the same time, domestic crude oil extraction is more energy intensive than foreign crude oil
production.  Advanced oil recovery practices in the United States represent 11% of the total production
volume, compared to 3% for foreign oil extraction.  Advanced oil recovery uses twice as much primary
energy per kilogram of oil compared to conventional extraction.   Per kilogram of oil out of the ground,
advanced crude oil extraction requires almost 20 times more process energy than onshore domestic crude
oil extraction because the processes employed are energy intensive and the amount of oil recovered is low
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compared to other practices. Domestic crude oil supply is essentially equal to foreign oil supply (50.26%
versus 49.74%, respectively) in our model, but its process energy requirement is 62% higher than that of
foreign crude oil production (see Figure 2).

If our present trend of increased dependence on foreign oil continues, we can expect the life cycle energy
efficiency of petroleum diesel to worsen because of the higher energy costs of transporting foreign crude
to the United States.  In addition, with declining domestic oil supplies, we may well see increased energy
penalties for domestic crude oil extraction, as the practice of advanced oil recovery increases.

Table 4 and Figure 3 summarize the fossil energy inputs with respect to petroleum diesel’s energy output.
Petroleum diesel uses 1.1995 MJ of fossil energy to produce 1 MJ of fuel product energy.  This
corresponds to a fossil energy ratio of 0.833710.  Because the main feedstock for diesel production is itself
a fossil fuel, it is not surprising that this ratio is almost identical to the life cycle energy efficiency of
83.28%. In fact, fossil energy associated with the crude oil feedstock accounts for 93% of the total fossil
energy consumed in the life cycle.  The fossil energy ratio is slightly less than the life cycle energy ratio
because there is a very small contribution to the total primary energy demand, which is met through
hydroelectric and nuclear power supplies related to electricity generation.
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Figure 2: Process Energy Demand for Petroleum Diesel Life Cycle

2.4.1.1.4 Biodiesel Life Cycle Energy Demand
Table 5 and Figure 4 present the total  primary energy demand used in each stage of the biodiesel life
cycle.  One MJ of biodiesel requires an input of 1.2414 MJ of primary energy, resulting in a life cycle
energy efficiency of 80.55%.  Biodiesel is comparable to petroleum diesel in the conversion of primary
energy to fuel product energy (80.55% versus 83.28%). The largest contribution to primary energy (87%)
is the soybean oil conversion step because this is where we have chosen to include the feedstock energy
                                                  
10 Fossil Energy Ratio = 1 MJ Fuel Energy/1.1995 MJ of Fossil Energy Input = 0.8337.
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associated with the soybean oil itself11.  As with the petroleum life cycle, the stages of the life cycle that
are burdened with the feedstock energy overwhelm all other stages.  Had the soybean oil energy been
included with the farming operation, then soybean agriculture would have been the dominant consumer of
primary energy.  This is analogous to placing the crude oil feedstock energy in the extraction stage for
petroleum diesel fuel.  The next two largest primary energy demands are for soybean crushing and
soybean oil conversion.  They account for most of the remaining 13% of the total demand.

Table 4: Fossil Energy Requirements for the Petroleum Diesel Life Cycle

Stage Fossil Energy (MJ per MJ of Fuel) Percent

Domestic Crude Production 0.572809 47.75%

Foreign Crude Oil Production 0.539784 45.00%

Domestic Crude Transport 0.003235 0.27%

Foreign Crude Transport 0.013021 1.09%

Crude Oil Refining 0.064499 5.38%

Diesel Fuel Transport 0.006174 0.51%

Total 1.199522 100.00%

When we look at process energy separately from primary energy, we see that energy demands in the
biodiesel life cycle are not dominated by soybean oil conversion (Figure 5).   The soybean crushing and
soy oil conversion to biodiesel demand the most process energy (34.25 and 34.55%, respectively, of the
total demand).  Agriculture accounts for most of the remaining process energy consumed in life cycle for
biodiesel (almost 25% of total demand).  Each transportation step is only 2%-3% of the process energy
used in the life cycle.

                                                  
11 Energy contained in the soybean oil itself represents, in effect, the one place in the biodiesel life cycle where input
of solar energy is accounted for.  Total radiant energy available to soybean crops is essentially viewed as “free” in
the life cycle calculations.  It becomes an accountable element of the life cycle only after it has been incorporated in
the soybean oil itself.  This is analogous to counting the feedstock energy of crude petroleum as the point in its life
cycle where solar energy input occurs.  Petroleum is essentially stored solar energy.  The difference between
petroleum and soybean oil as sinks for solar energy is their time scale.  While soybean oil traps solar energy on a
rapid (“real time”) basis, petroleum storage represents a process that occurs on a geologic time scale.  This
difference in the dynamic nature of solar energy utilization is the key to our definitions of renewable and
nonrenewable energy.
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Figure 3: Ranking of Fossil Energy Demand for Stages of the Petroleum Diesel Life Cycle

Table 5: Primary Energy Requirements for Biodiesel Life Cycle

Stage Primary Energy
(MJ per MJ of Fuel)

Percent

Soybean Agriculture 0.0660 5.32%

Soybean Transport 0.0034 0.27%

Soybean Crushing 0.0803 6.47%

Soy Oil Transport 0.0072 0.58%

Soy Oil Conversion 1.0801 87.01%

Biodiesel Transport 0.0044 0.35%

Total 1.2414 100.00%

Table 6 and Figure 6 summarize the fossil energy requirements for the biodiesel life cycle. Because 90%
of its feedstock requirements are renewable (that is, soybean oil), biodiesel’s fossil energy ratio is
favorable.  Biodiesel uses 0.3110 MJ of fossil energy to produce one MJ of fuel product; this equates to a
fossil energy ratio of 3.215.  In other words, the biodiesel life cycle produces more than three times as
much energy in its final fuel product as it uses in fossil energy.  Fossil energy demand for the conversion
step is almost twice that of its process energy demand, making this stage of the life cycle the largest
contributor to fossil energy demand.  The use of methanol as a feedstock in the production of biodiesel
accounts for this high fossil energy demand.  We have counted the feedstock energy of methanol coming
into the life cycle at this point, assuming that the methanol is produced from natural gas.  This points out
an opportunity for further improvement of the fossil energy ratio by substituting natural gas-derived
methanol with renewable sources of methanol, ethanol or other alcohols.
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Figure 4: Ranking of Primary Energy Demand for Stages of the Biodiesel Life Cycle
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Table 6: Fossil Energy Requirements for the Biodiesel Life Cycle

Stage Fossil Energy (MJ per MJ of Fuel) Percent

Soybean Agriculture 0.0656 21.08%

Soybean Transport 0.0034 1.09%

Soybean Crushing 0.0796 25.61%

Soy Oil Transport 0.0072 2.31%

Soy Oil Conversion 0.1508 48.49%

Biodiesel Transport 0.0044 1.41%

Total 0.3110 100.00%
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Figure 6: Fossil Energy Requirements versus Fuel Product Energy for the Biodiesel Life Cycle

2.4.1.1.5 Effect of Biodiesel on Life Cycle Energy Demands
Compared on the basis of primary energy inputs, biodiesel and petroleum diesel are essentially
equivalent.  Biodiesel has a life cycle energy efficiency of 80.55%, compared to 83.28% for petroleum
diesel.  The slightly lower efficiency reflects a slightly higher demand for process energy across the life of
cycle for biodiesel.  On the basis of fossil energy inputs, biodiesel enhances the effective use of this finite
energy resource.  Biodiesel leverages fossil energy inputs by more than three to one.
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2.4.1.2 CO2 Emissions

2.4.1.2.1 Accounting for Biomass-Derived Carbon
Biomass plays a unique role in the dynamics of carbon flow in our biosphere.  Biological cycling of
carbon occurs when plants (biomass such as soybean crops) convert atmospheric CO2 to carbon-based
compounds through photosynthesis.  This carbon is eventually returned to the atmosphere as organisms
consume the biological carbon compounds and respire.  Biomass derived fuels reduce the net atmospheric
carbon in two ways.  First, they participate in the relatively rapid biological cycling of carbon to the
atmosphere (via engine tailpipe emissions) and from the atmosphere (via photosynthesis).  Second, these
fuels displace the use of fossil fuels.  Combustion of fossil fuels releases carbon that took millions of
years to be removed from the atmosphere, while combustion of biomass fuels participates in a process
that allows rapid recycle of CO2 to fuel.  The net effect of shifting from fossil fuels to biomass-derived
fuels is, thus, to reduce the amount of CO2 present in the atmosphere.

Because of the differences in the dynamics of fossil carbon flow and biomass carbon flow to and from the
atmosphere, biomass carbon must be accounted for separately from fossil-derived carbon.  The LCI
model tracks carbon from the point at which it is taken up as biomass via photosynthesis to its final
combustion as biodiesel used in an urban bus.  The biomass-derived carbon that ends up as CO2 leaving
the tailpipe of the bus is subtracted from the total CO2 emitted by the bus because it is ultimately reused in
the production of new soybean oil.  In order to ensure that we accurately credit the biodiesel LCI for the
amount of recycled CO2, we provide a material balance on biomass carbon.

The material balance shows all the biomass carbon flows associated with the delivery of 1 bhp-h of
engine work (Figure 7).  For illustration purposes, only the case of 100% biodiesel is shown. Lower blend
rates proportionately lower the amount of biomass carbon credited as part of the recycled CO2. Carbon
incorporated in the meal fraction of the soybeans is not included in the carbon balance.  Only carbon in
the fatty acids and triglycerides that are used in biodiesel production are tracked.  Not all the carbon
incorporated in fatty acids and triglycerides ends up as CO2 after combustion of biodiesel. Some oil loss
occurs in the meal by-product.  Glycerol is removed from the triglycerides as a by-product. Fatty acids are
removed as soaps and waste.  Finally, carbon released in combustion ends up in the form of CO2, CO,
THC, and TPM. Of the 169.34 grams of carbon absorbed in the soybean agriculture stage, only 148.39
grams (87%) end up in biodiesel.  After accounting for carbon that ends up in other combustion products,
148.05 grams of carbon end up as 543.34 grams of tailpipe CO2.  This CO2 is subtracted from the diesel
engine emissions as part of the biological recycle of carbon.  No credit is taken for the 13% of the carbon
that ends up in various by-products and waste streams.

2.4.1.2.2 Comparison of CO2 Emissions for Biodiesel and Petroleum Diesel
Table 7 summarizes CO2 flows from the total life cycles of biodiesel and petroleum diesel and the total
CO2 released at the tailpipe for each fuel. The dominant sources of CO2 for both the petroleum diesel life
cycle and the biodiesel life cycle is the combustion of fuel in the bus.  For petroleum diesel, CO2 emitted
from the tailpipe of the bus represents 86.54% of the total CO2 emitted across the entire life cycle of the
fuel.  Most remaining CO2 comes from emissions at the oil refinery, which contributes 9.6% of the total
CO2 emissions. For biodiesel, 84.43% of the CO2 emissions occur at the tailpipe.  The remaining CO2

comes almost equally from soybean agriculture, soybean crushing, and conversion of soy oil to biodiesel.

At the tailpipe, biodiesel emits 4.7% more CO2 than petroleum diesel, most of which is renewable.  The
nonrenewable portion comes from the methanol.  Biodiesel generates 573.96 g/bhp-h compared with
548.02 g/bhp-h for petroleum diesel.  The higher CO2 levels result from more complete combustion and
the concomitant reductions in other carbon-containing tailpipe emissions.  As Figure 8 shows, the overall
life cycle emissions of CO2 from B100 are 78.45% lower than those of petroleum diesel.  The reduction is
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a direct result of carbon recycling in soybean plants. B20, the most commonly used form of biodiesel in
the US, reduces net CO2 emissions by 15.66% per gallon of fuel used.

Table 7: Tailpipe Contribution to Total Life Cycle CO2 for
Petroleum Diesel and Biodiesel

(g CO2/bhp-h)

Fuel Total Life
Cycle Fossil
CO2

Total Life
Cycle Biomass
CO2

Total Life
Cycle CO2

Tailpipe
Fossil
CO2

Tailpipe
Biomass
CO2

Total
Tailpipe
CO2

% of Total
CO2 from
Tailpipe

Petroleum Diesel 633.28 0.00 633.28 548.02 0.00 548.02 86.54%

B100 136.45 543.34 679.78 30.62 543.34 573.96 84.43%

2.4.1.3 Primary Resource Consumption for Biodiesel and Petroleum Diesel
The use of B100 as a substitute for petroleum diesel effects a 95% reduction in life cycle consumption of
petroleum.  Figure 9 compares petroleum oil consumption for petroleum diesel, B20, and B100. The 20%
blend of biodiesel provides a proportionate reduction of 19%.

Consumption of coal and natural gas is a different story (Figure 10).  The use of B100 increases life cycle
consumption of coal by 19%.  This reflects the higher overall demand for electricity in the biodiesel life
cycle, relative to petroleum diesel.  Electricity demand for soybean crushing is the dominant factor in
electricity consumption for biodiesel because of the mechanical processing and solids handling equipment
involved in this step.  Life cycle consumption of natural gas increases by 77% for biodiesel versus
petroleum diesel. Two factors contribute to this increase: 1) the assumed use of natural gas for the supply
of steam and process heat in soybean crushing and soy oil conversion, and 2) the use of natural gas to
produce methanol used in the conversion step.

The biodiesel life cycle imposes a higher burden on water resources than the petroleum diesel life cycle.
Water use for petroleum diesel is not even visible on a plot scaled to show biodiesel use (Figure 11).  That
is because the biodiesel life cycle uses water at a rate that is three orders of magnitude higher than that of
petroleum diesel.  The impact of this water use is not addressed in this report.  We offer no simple way to
compare water use between the two life cycles because there is no simple equivalency in its use and final
disposition.
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Figure 7: Biomass Carbon Balance for Biodiesel Life Cycle (g carbon/bhp-h)12

                                                  
12 All numbers presented as carbon equivalent. To calculate actual CO2 emissions, multiply carbon equivalent numbers by 3.67 (the ratio of the molecular weight
of CO2 divided by the molecular weight of carbon).
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13 Net CO2 calculated by setting biomass CO2 emissions from the tailpipe to zero.
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2.4.1.4 Life Cycle Emissions of Regulated and Nonregulated Air Pollutants
Regulated air pollutants include the following:

• Carbon Monoxide (CO)

• Nitrogen Oxides (NOx)

• Particulate Matter Less Than 10 Microns (PM10)

• Sulfur Oxides (SOx)

• Non Methane Hydrocarbons (NMHC)
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The emissions of these air pollutants are regulated at the tailpipe for diesel engines.  Sulfur dioxide (SOx)
does not have specific tailpipe limits, but it is controlled through sulfur content of the fuel.  Other air
emissions included in this study are methane (CH4), benzene, formaldehyde, nitrous oxide (N2O),
hydrochloric acid (HCl), hydrofluoric acid (HF), and ammonia. N2O is associated with agricultural field
emissions. HCl and HF are associated with coal combustion in electric power stations.  Ammonia is
released primarily during fertilizer production.

2.4.1.4.1 Comparison of Life Cycle Air Emissions for Biodiesel and Petroleum Diesel
Figure 12 summarizes the differences in life cycle air emissions for B100 and B20 versus petroleum
diesel fuel.  In this section, we discuss overall differences in the emissions of the biodiesel and petroleum
life cycles.  More detail on the sources of the differences is presented in section 9.1.4 Life Cycle
Emissions of Regulated and Nonregulated Air Pollutants.

We report particulate matter and hydrocarbons differently from the definitions used by EPA in their
regulations.  This difference in reporting is due to variations in how different data sources for the stages
of the life cycle report these emissions.  Benzene and formaldehyde emissions are not consistently
reported.  Some sources explicitly define emissions for non-methane hydrocarbons (NMHC), while others
do not specify this distinction.  Hydrocarbon data are reported as THC, defined as:

( )44 noCHdunspecifie HCHCdeformaldehyBenzeneCHTHC ++++=

where:

THC = total hydrocarbons

CH4 = methane

HCunspecified = unspecified hydrocarbons

HCnoCH4 = hydrocarbons excluding methane

Likewise, particulates are combined as a single category according to the following formula:

( )dunspecifiePMPMTPM += 10

where:

TPM = total particulate matter

PM10 = particulate matter less than 10 micron

PMunspecified = unspecified particulate matter

The replacement of petroleum diesel with biodiesel in an urban bus reduces life cycle air emissions for all
but three of the pollutants we tracked.  The largest reduction in air emissions that occurs when B100 or
B20 are used as a substitute for petroleum diesel is for CO.  Reductions in CO reach 34.5% when using
B100.  The effectiveness of B20 in reducing life cycle emissions of CO drops proportionately with the
blend level.  Biodiesel could, therefore, be an effective tool for mitigating CO in EPA’s designated CO
non-attainment areas14.

                                                  
14 These are urban areas in the U.S. identified as not currently meeting National Ambient Air Quality Standards for
levels of carbon monoxide.
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Figure 12: Life Cycle Air Emissions for B100 and B20
Compared to Petroleum Diesel Life Cycle Air Emissions

B100 exhibits life cycle emissions of total particulates (TPM) that are 32.41% lower than those of the
petroleum diesel life cycle.  As with CO, the effectiveness of biodiesel in reducing TPM drops
proportionately with blend level.  This improvement in TPM emissions is a direct result of reductions in
PM10 at the tailpipe of the bus.  Tailpipe emissions of PM10 are 68% lower for urban buses operating on
B100 versus petroleum diesel.  PM10 emitted from mobile sources is a major EPA target because of its
role in respiratory disease.  Urban areas represent the greatest risk in terms of numbers of people exposed
and level of PM10 present.  Use of biodiesel in urban buses is potentially a viable option for controlling
both life cycle emissions of TPM and tailpipe emissions of PM1015.

Biodiesel’s life cycle produces 35% more THC than petroleum diesel’s life cycle.  This is in spite of the
fact that tailpipe emissions of THC for B100 are 37% lower.  The level of emissions of hexane that occur
in the soybean crushing stage overshadows the tailpipe benefits16.  In understanding the implications of
the higher life cycle emissions, it is important to remember that emissions of hydrocarbons, as with all of
the air pollutants discussed, have localized effects.  In other words, it makes a difference where these
emissions occur.  The fact that biodiesel’s hydrocarbon emissions at the tailpipe are lower may mean that

                                                  
15 Among the options under consideration by EPA are regulations that would control levels of PM2.5, as opposed to
PM10.  PM2.5 includes particles of 2.5 microns or less in diameter.  That is, EPA is focusing its attention on the
very smallest particles in ambient air.  Data collected in this study focus on PM10.  While our results bode well for
lowering levels of PM10, no information is available on the effect of biodiesel on this new class of smaller particles.
16 See section 9.1.4.3 Comparison of Life Cycle Air Emissions from Biodiesel and Petroleum Diesel for more
details.


